
International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A greedy approach based algorithm for the
vertex cover problem

Sushil Chandra Dimri, Kamlesh Chandra Purohit, Durgesh Pant

Abstract— The vertex cover problem is NP complete problem; we use approximation algorithms to find near optimal solution of the vertex
cover problem. In this paper we are presenting a greedy algorithm for finding a near optimal cover for a given graph G = (V, E).The
development of the algorithm is based on greedy approach and the graph is represented in form of its adjacency matrix. The proposed
algorithm finds a minimum vertex cover in all known examples of graphs.

Index Terms— Minimum 7 keywords are mandatory, Keywords should closely reflect the topic and should optimally characterize the
paper. Use about four key words or phrases in alphabetical order, separated by commas.

—————————— ——————————

1 INTRODUCTION
here is a class of problems, whose exponential complexi-
ties have been established theoretically are known as NP
problems. Designing polynomial time algorithms for such

a class of problems is still open.[1 and 2] Due to the demand
for solving such problems, Researchers are constantly attempt-
ing to provide solutions one after the other focusing the opti-
mality by introducing several operators with salient features
such as:

1. Reducing the computational complexity,
2. Randomizations etc.,

The vertex cover (VC) problem belongs to the class of NP-
complete graph theoretical problems, which plays a central
role in theoretical computer science and it has a numerous real
life applications [3]. We are unlikely to find a polynomial-time
algorithm for solving vertex-cover problem exactly. Vertex-
cover exhibits a coverable–uncover able phase transition.

Branch-and-bound problem solver (BB), approximation algo-
rithm, greedy algorithm simple genetic algorithm (GA), pri-
mal-dual based algorithm (PDB) and the Alom’s algorithm.
These approaches can be used to solve Vertex Cover problem.
The results indicate that all algorithms give near optimal solu-
tions. The performance differences of all algorithms on a
graph are relatively small to obtain a vertex-cover.

Vertex cover problem is a NP-complete problem. If a problem
is NP-complete, we are unlikely to find polynomial-time algo-
rithm for solving it exactly, but this does not imply that all
hope is lost. There are two approaches to getting around NP-
completeness. First if the actual inputs are small, an algorithm

with exponential running time may be perfectly satisfactory.

Second, it may still possible to find near optimal solutions in
polynomial time. In practice near optimality is often good
enough. An algorithm that returns near-optimal solutions is
called an approximation. [4, 5 and 6].

In computer science, the Vertex Cover Problem or Node Cover
Problem is one of Karp's 21 NP-complete problems. It is often
used in complexity theory to prove NP-hardness of more
complicated problems. The classical minimum vertex-cover
problem involves graph theory and finite combinatory and is
categorized under the class of NP-complete problems in terms
of its computational complexity [7]. Minimum vertex cover
has attracted researchers and practitioners because of the NP-
completeness and because many difficult real-life problems
can be formulated as instances of the minimum vertex cover.
Examples of the areas where the minimum vertex-cover prob-
lem occurs in real world applications are communications,
civil and electrical engineering, and bioinformatics.
Definition: Consider a graph G = (V, E) where V and E are
accordingly set of vertices and edges. A vertex cover of an
undirected graph G is a subset V (c) of V such that if (u, v) is
an edge of G, Then either u V(c) or v V(c) or both.

The size of a vertex cover is the number of vertices in it. The
vertex cover problem is to find a vertex cover of minimum size
in a given undirected graph. Such a vertex cover is called an
optimal vertex cover. ‘Coreman’ describes an approximation
algorithm with O (E) time for vertex cover problem. This algo-
rithm finds the approximate solution.

There are two versions of the minimum vertex cover problem:
the decision version and the optimization one. In the decision
version, the task is to verify for a given graph whether there
exists a vertex cover of a specified size. On the other hand, in
the optimization version of this problem, the task is to find a
vertex cover of minimum size. To illustrate minimum vertex
cover, consider the problem of placing guards Hartmann, [8]
in a museum where corridors in the museum corresponds one
guard at the end of each corridor.

T

————————————————
 Sushil Chandra Dimri, Professor and Head of Computer Applications

department in Graphic Era University. Esbb E-mail:
sushil.dimri82@gmail.com

 Kamlesh Chandra Purohit, Assistant Professor in Computer Applications
department in Graphic Era University. E-mail: kamleshpuro-
hit80@gmail.com

 Durgesh Pant, Professor in Computer Science department Uttarakhand
open university
 E-mail: pantdurgesh@yahoo.com

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The minimum vertex cover problem is also closely related to
many other hard graph problems and so it interests the re-
searchers in the field of design of optimization and approxi-
mation algorithms. For instance, the independent set problem,
is similar to the minimum vertex cover problem because a
minimum vertex cover defines a maximum independent set
and vice versa. Another interesting problem that is closely
related to the minimum vertex cover is the edge cover which
seeks the smallest set of edges such that each vertex is includ-
ed in one of the edges.

1.1 NP-Completeness and reducibility
In computational complexity theory, the complexity class NP-
complete is a class of decision problems. A decision problem L
is NP-complete if it is in the set of NP problems so that any
given solution to the decision problem can be verified in poly-
nomial time, and also in the set of NP-hard problems so that
any NP problem can be converted into L by a transformation
of the inputs in polynomial time. [9], [10], [11]
Although any given solution to such a problem can be verified
quickly, there is no known efficient way to locate a solution in
the first place; indeed, the most notable characteristic of NP-
complete problems is that no fast solution to them is known.
That is, the time required to solve the problem using any cur-
rently known algorithm increases very quickly as the size of
the problem grows. As a result, the time required to solve
even moderately sized versions of many of these problems
easily reaches into the billions or trillions of years, using any
amount of computing power available today. As a conse-
quence, determining whether or not it is possible to solve
these problems quickly, called the P versus NP problem, is one
of the principal unsolved problems in computer science today.
[12], [13]
While a method for computing the solutions to NP-complete
problems using a reasonable amount of time remains undis-
covered, computer scientists and programmers still frequently
encounter NP-complete problems. NP-complete problems are
often addressed by using approximation algorithms [14], [15],
[16].
NP-complete is a subset of NP, the set of all decision problems
whose solutions can be verified in polynomial time; NP may
be equivalently defined as the set of decision problems that
can be solved in polynomial time on a nondeterministic Tu-
ring machine. A problem p in NP is also in NPC if and only if
every other problem in NP can be transformed into p in poly-
nomial time. [17], [18].
The easiest way to prove that some new problem is NP-
complete is first to prove that it is in NP, and then to reduce
some known NP-complete problem to it. Therefore, it is useful
to know a variety of NP-complete problems. The list below
contains some well-known problems that are NP-complete
when expressed as decision problems. [19],[20]

1. Knapsack problem
2. Hamiltonian path problem
3. Traveling salesman problem
4. Subset sum problem

5. Clique problem
6. Vertex cover problem
7. Graph coloring problem

1.2 Solving NP-complete problems
At present, all known algorithms for NP-complete problems
require time that is super polynomial in the input size, and it
is unknown whether there are any faster algorithms. [21],[22].
The following techniques can be applied to solve computa-
tional problems in general, and they often give rise to substan-
tially faster algorithms: [23].

Approximation: Instead of searching for an optimal solution,
search for an "almost" optimal one.
Randomization: Use randomness to get a faster average run-
ning time, and allow the algorithm to fail with some small
probability. Note: The Monte Carlo method is not an example
of an efficient algorithm, although evolutionary approaches
like Genetic algorithms may be.
Restriction: By restricting the structure of the input (e.g., to
planar graphs), faster algorithms are usually possible.
Parameterization: Often there are fast algorithms if certain
parameters of the input are fixed.
Heuristic: An algorithm that works "reasonably well" in many
cases, but for which there is no proof that it is both always fast
and always produces a good result. Metaheuristic approaches
are often used.

1.3 The vertex cover problem:
A vertex cover of an undirected graph G= (V, E) is a subset
V’of V such that if (u, v) is an edge of G then either u V’ or v
 V’ (or both). The size of vertex cover is the number of verti-
ces in it. [24], [25], [26]
The vertex cover problem is to find a vertex cover of minimum
size in a given undirected graph. This problem is the optimiza-
tion version of an NP-Complete decision problem.

Fig. 1- The optimal cover for the given graph is C= {V12, V13}

V3 V1

V2
V4

V11

V9

 V10

V8

V7

V6

V5

V12 V13

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2.0 PROPOSED ALGORITHM
This paper suggests a polynomial time approximation algo-
rithm to solve the vertex cover problem. The algorithm is sim-
ple and straight to find the near optimal vertex cover to the
given graph. The algorithms takes graph G (V, E) as adjacency
matrix W, W= [d [i, j]] |V|× |V| // the adjacency matrix//.
The algorithm is based on greedy approach but capable to
produce the near optimal result. The algorithm is tested on
various types of graphs and results given by the algorithm are
accurate.

New Optimal Vertex Cover (G, W)

//Input: A graph G = (V, E)
// Output: Set C subset of V, the vertex cover.
// The graph is represented with adjacency matrix W (|V| ×
|V|)

1. D =W;
2. C= φ; // Null set //
3. do
4. For i =1 to |V|
5. do D[i] = ∑ d[i,j]
 1≤ j ≤ |V|
6. Ki = Max {D[i]}
 1≤ i ≤ |V|
7. C=C U {Vi} // Vi is the vertex Corre-
sponding to Ki, index i will locate Vi //
8. For (j=1, j ≤ |V|, j++)
 Set d [i, j] =0
 9. For (i=1, i ≤ |V|, i++)|
 Set d [i, j] =0
10. While (Ki ≠ 0) // the matrix turns in to
zero matrix//
11. Return C. // the near optimal vertex
cover//

3. THE COMPLEXITY OF THE ALGORITHM
The time complexity of the algorithms based on the following
steps

1. Calculation of D[i],
2. Calculation of Ki
3. Set d [i, j] =0
4. Set d [i, j] = 0.
5. Finally, while (Ki ≠ 0)

To compute all D[i] is of order O (|V|), time to find Ki is
again of order O (|V|). The step 8 and 9 both takes time of
order O (|V|), all these steps are independent of each other so
the total complexity of inner steps is of order (|V| +|V| +
(|V| + |V|). i.e.4(|V|). while loops runs until the adjacency
matrix does not turn in to Zero Matrix. The time consumed in
the testing whether Ki is zero or not, takes time not more than
O (|V|). So the time complexity of this algorithm in total is at
most of order O (|V| (|V| +|V| + |V| + |V|)).i.e. O

(|V|2). If |V| = n (says) (Number of vertices in graph G are
n) then the time complexity of the algorithm is O (n2).

3.1 Applying the algorithm on a given Graph:

Fig.2 - The input graph

Number of nodes, n = |V| =11,
Initially C = φ
And D =

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i]

V1 0 1 0 0 0 0 1 0 0 0 0 2

V2 1 0 1 1 0 0 1 1 0 0 0 5

V3 0 1 0 1 0 0 0 0 0 0 0 2

V4 0 1 1 0 1 1 0 0 0 0 0 4

V5 0 0 0 1 0 1 0 0 0 0 0 2

V6 0 0 0 1 1 0 1 0 0 1 0 4

V7 1 1 0 0 0 1 0 1 0 1 0 5

V8 0 1 0 0 0 0 1 0 1 1 0 4

V9 0 0 0 0 0 0 0 1 0 1 1 3

V10 0 0 0 0 0 1 1 1 1 0 1 5

V11 0 0 0 0 0 0 0 0 1 1 0 2

Ki = 2
C = φ U {V2} = {V2}
Setting a [2, j] = 0 for 1≤ j ≤11

 and a [i, 2] = 0 for 1≤ i ≤11

V9

V5

V11

V1 V8

V7

V10
V2

V3
V4

V6

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i]

V1 0 0 0 0 0 0 1 0 0 0 0 1

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 0 0 0 1 0 0 0 0 0 0 0 1

V4 0 0 1 0 1 1 0 0 0 0 0 3

V5 0 0 0 1 0 1 0 0 0 0 0 2

V6 0 0 0 1 1 0 1 0 0 1 0 4

V7 1 0 0 0 0 1 0 1 0 1 0 4

V8 0 0 0 0 0 0 1 0 1 1 0 3

V9 0 0 0 0 0 0 0 1 0 1 1 3

V10 0 0 0 0 0 1 1 1 1 0 1 5

V11 0 0 0 0 0 0 0 0 1 1 0 2

Ki = 10,
C = {V2} U {V10} = {V2, V10}

Setting

a [10, j] = 0 for 1≤ j ≤11

 and a [i, 10] = 0 for 1≤ i ≤11

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i]

V1 0 0 0 0 0 0 1 0 0 0 0 1

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 0 0 0 1 0 0 0 0 0 0 0 1

V4 0 0 1 0 1 1 0 0 0 0 0 3

V5 0 0 0 1 0 1 0 0 0 0 0 2

V6 0 0 0 1 1 0 1 0 0 0 0 3

V7 1 0 0 0 0 1 0 1 0 0 0 3

V8 0 0 0 0 0 0 1 0 1 0 0 2

V9 0 0 0 0 0 0 0 1 0 0 1 2

V10 0 0 0 0 0 0 0 0 0 0 0 0

V11 0 0 0 0 0 0 0 0 1 0 0 1

Ki =4,

C = {V4} U {V2, V10} = {V4, V2, V10}

Setting
 a [4, j] = 0 for 1≤ j ≤11
and a [i, 4] = 0 for 1≤ i ≤11

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i]

V1 0 0 0 0 0 0 1 0 0 0 0 1

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 0 0 0 0 0 0 0 0 0 0 0 0

V4 0 0 0 0 0 0 0 0 0 0 0 0

V5 0 0 0 0 0 1 0 0 0 0 0 1

V6 0 0 0 0 1 0 1 0 0 0 0 2

V7 1 0 0 0 0 1 0 1 0 0 0 3

V8 0 0 0 0 0 0 1 0 1 0 0 2

V9 0 0 0 0 0 0 0 1 0 0 1 2

V10 0 0 0 0 0 0 0 0 0 0 0 0

V11 0 0 0 0 0 0 0 0 1 0 0 1

Ki =7

C = {V7} U {V4, V2, V10} = { V7, V4, V2, V10}

Setting
 a [7, j] = 0 for 1≤ j ≤11

and a [i, 7] = 0 for 1≤ i ≤11

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i]

V1 0 0 0 0 0 0 0 0 0 0 0 0

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 0 0 0 0 0 0 0 0 0 0 0 0

V4 0 0 0 0 0 0 0 0 0 0 0 0

V5 0 0 0 0 0 1 0 0 0 0 0 1

V6 0 0 0 0 1 0 0 0 0 0 0 1

V7 0 0 0 0 0 0 0 0 0 0 0 0

V8 0 0 0 0 0 0 0 0 1 0 0 1

V9 0 0 0 0 0 0 0 1 0 0 1 2

V10 0 0 0 0 0 0 0 0 0 0 0 0

V11 0 0 0 0 0 0 0 0 1 0 0 1

Ki =9

C = {V9} U {V7, V4, V2, V10} = {V9, V7, V4, V2, V10}

Setting
 a [9, j] = 0 for 1≤ j ≤11
and a [i, 9] = 0 for 1≤ i ≤11

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i]

V1 0 0 0 0 0 0 0 0 0 0 0 0

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 0 0 0 0 0 0 0 0 0 0 0 0

V4 0 0 0 0 0 0 0 0 0 0 0 0

V5 0 0 0 0 0 1 0 0 0 0 0 1

V6 0 0 0 0 1 0 0 0 0 0 0 1

V7 0 0 0 0 0 0 0 0 0 0 0 0

V8 0 0 0 0 0 0 0 0 0 0 0 0

V9 0 0 0 0 0 0 0 0 0 0 0 0

V10 0 0 0 0 0 0 0 0 0 0 0 0

V11 0 0 0 0 0 0 0 0 0 0 0 0

Ki = 5,

C = {V5} U {V9, V7, V4, V2, V10} = = {V5, V9, V7, V4, V2, V10}

Setting
 a [5, j] = 0 for 1≤ j ≤11

and a [i, 5] = 0 for 1≤ i ≤11

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i]

V1 0 0 0 0 0 0 0 0 0 0 0 0

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 0 0 0 0 0 0 0 0 0 0 0 0

V4 0 0 0 0 0 0 0 0 0 0 0 0

V5 0 0 0 0 0 0 0 0 0 0 0 0

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 5
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

V6 0 0 0 0 0 0 0 0 0 0 0 0

V7 0 0 0 0 0 0 0 0 0 0 0 0

V8 0 0 0 0 0 0 0 0 0 0 0 0

V9 0 0 0 0 0 0 0 0 0 0 0 0

V10 0 0 0 0 0 0 0 0 0 0 0 0

V11 0 0 0 0 0 0 0 0 0 0 0 0

Ki = 0 // Zero // Algorithm terminates
Output: So C = {V5, V9, V7, V4, V2, V10} is the near opti-
mal cover.

4.0 APPLICATION OF THE SOLUTION: (THE WATCH
TOWER CONCEPT)

High speed communication networks are the demand of time,
A key challenge is to make communication network fault free
and reliable, it is the responsibility of the network manage-
ment to meet these challenges. Fault management is an im-
portant part of network management which is responsible for
detection and identification of the network fault.
Fault management is a critical issue since fault and downtime
is very costly.

Now a day the occurrence of faults in communication network
are very frequent , and some time it is difficult to identify the
fault quickly, also to monitor the performance of all the links
in networks is vital , Vertex Cover problem suggest the con-
cept of watch tower ,these are specific node in the communica-
tion network which are maximally connected with other nodes
, with these few nodes it is possible to identify the occurrence
of the fault quickly and to monitor the performance of the
entire network

CONCLUSION
The greedy algorithm gives solutions better than approxima-
tion algorithm. The algorithm always makes the choice that
looks best at the moment. Clever greedy algorithm always
takes the vertex with the highest degree, add it to the cover
set, remove it from the graph, and repeats. But the greedy
heuristic cannot always find an optimal solution.
The approximation algorithms are available to solve the vertex
cover problem which generally gives the near optimal solution
in polynomial time. The proposed approximation algorithm
provides the solution to vertex cover problem in polynomial
time, though the time taken by the algorithm is a polynomial
of little high of degree 2 but it is possible to reduce it further,
the proposed approximation algorithm gives the optimal solu-
tion in majority of the cases but fails to provide optimal solu-
tion in some specific cases.

ACKNOWLEDGEMENT

We wish to express my sincere gratitude and cordial thanks to
Prof. Kamal Ghanshala (President Graphic Era University
Dehradun) for his sincere and continual encouragement in
preparing this paper; thanks are also due for Dr. R.C. Joshi
(Former Head- EC &CS Deptt. IIT Roorkee) (Chancellor
Graphic Era University Dehradun) and Dr. Sanjay Jasola (Vice
Chancellor Graphic Era Hill University Dehradun) for their
continual guidance, support and helpful discussion.

REFERENCES

[1] Cook, S.A. "The complexity of theorem proving procedures".
Proceedings, Third Annual ACM Symposium on the Theory of
Computing, ACM, New York. p.p. 151–158. 1971.

[2] Sipser, M. “Introduction to the Theory of Computation” PWS
Publishing. Sections 7.4 –7.5, pp. 248–271. ISBN 0-534-94728-X.
1997.

[3] Pemmaraju, S. and Skiena, S. "Minimum Vertex Cover Compu-
tational Discrete Mathematics Combinatorics and Graph Theory
with Mathematica” Cambridge, England: Cambridge University
Press, p. 317, 2003.

[4] Aho, A.V., Hopcroft, J.E. and Ullman, J.D. “The Design and
Analysis of Computer Algorithms” Addison –Wesley, 1975.

[5] George K. “A better approximation ratio for the vertex cover
problem.” In ICAL 2005, volume 3580 of LNCS, p.p 1043–1050,
Lisboa, Portugal, June 2005. Springer-Verlag Berlin Heidelberg.

[6] Clarkson, K. “A modification to greedy algorithm for Vertex
Cover Problem” IP: Vol 16: p.p 23-25, 1983.

[7] Garey, M. R. and Johnson, D. S. “Computers and Intractability:
A Guide to the Theory of NPCompleteness.” W. H. Freeman,
1979.

[8] Hartmann, A. K., & Rieger, H. (Eds.) (2004). “New optimization
algorithms in physics”. Weinheim: Wiley-VCH.

[9] Dorits S. Hochbaum” Approximation algorithm for NP-Hard
problems”, 2002.

[10] Levin, L. A. “Average case complete problems” SIAM J. Com-
put., 15(1) p.286, 1986.

[11] Sipser, M. “The history and status of the P versus NP question”
In Proc. ACM STOC, p.p. 603–618, 1992.

[12] Kozen, D. C. “The Design and Analysis of Algorithms” Spring-
er, USA, ISBN-0-367-97667-6, ISBN-3-540-97687-6, 1991.

[13] Levitin, A. “Introduction to Design and Analysis of Algorithm”
Pearson Education Inc. and Dorling Kindersley Publishing ISBN
81-7758-835-4, New Delhi.

[14] Thomas C. and O’Connell. “Fundamental Problems in Compu-
ting, chapter: A survey of graph algorithms under extended
streaming models of computation.” p.p 455–476. Springer Sci-
ence Business Media, 2009.

[15] Papadimitriou, C. and Yannakakis, M. “Optimization, approxi-
mation, and complexity Classes”, Journal of Computer and Sys-
tem Sciences 43, p.p, 425-440 (1991).

[16] Jörg,F. and Martin, G. “Parameterized Complexity”, Theory.
Springer. ISBN 978-3-540-29952-3., 2006.

[17] Richard, M. K. “Reducibility among combinatorial problems.
Complexity of Computer Computations,” 1972.

[18] Corman, H.T., Leiserson, E.C., Rivest,L.R., and Stein, C. “Intro-

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 6
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

duction to Algorithms” 2nd, Prentice Hall of India private Ltd,
New Delhi , 2004.

[19] Vazirani, V., V. “Approximation Algorithms”. Springer-Verlag.
ISBN 3-540-65367-8, 2001.

[20] Bollobas. “Random Graphs”, Cambridge University Press,
Cambridge U.K, 2nd edition, 2001.

[21] Bar, R. –Yehuda and Seven “A linear time approximation algo-
rithm for weighted vertex cover problem”, J.Algorithms, Vol. 2:
p.p 198-203, 1981.

[22] Peliken, M. and Bayesian, H. “Optimization algorithm: towards
a new generation of evolutionary algorithms” Springer –Verlag
p.p.102-160. 2005

[23] Weight. M.and Hartmann, A. K. (2000a). “Minimal vertex cover
on finite-connectivity random graphs – A hard-sphere lattice-
gas picture”. Phys. Rev. E, 63, 056127.

[24] Garey, M.R. and D.S. Johnson. “Computers and Intractability”.
W.H. Freeman, 1979.

[25] Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., and
Troyansky, L. Determining computational complexity from
characteristic phase transitions. Nature, 400, 133. (1999).

[26] Weigt, M., & Hartmann, A. K. (2000b). “The number guards
needed by a museum – a phase transition in vertex covering of
random graphs”. Phys. Rev. Lett., 84, 6118.

