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A greedy approach based algorithm for the 
vertex cover problem 

Sushil Chandra Dimri, Kamlesh Chandra Purohit, Durgesh Pant 
 

Abstract— The vertex cover problem is NP complete problem; we use approximation algorithms to find near optimal solution of the vertex 
cover problem. In this paper we are presenting a greedy algorithm for finding a near optimal cover for a given graph G = (V, E).The 
development of the algorithm is based on greedy approach and the graph is represented in form of its adjacency matrix. The proposed 
algorithm finds a minimum vertex cover in all known examples of graphs.  

Index Terms— Minimum 7 keywords are mandatory, Keywords should closely reflect the topic and should optimally characterize the 
paper. Use about four key words or phrases in alphabetical order, separated by commas.   

——————————      —————————— 

1 INTRODUCTION                                                                     
here is a class of problems, whose exponential complexi-
ties have been established theoretically are known as NP 
problems. Designing polynomial time algorithms for such 

a class of problems is still open.[1 and 2] Due to the demand 
for solving such problems, Researchers are constantly attempt-
ing to provide solutions one after the other focusing the opti-
mality by introducing several operators with salient features 
such as:  

1. Reducing the computational complexity,  
2. Randomizations etc., 

 
The vertex cover (VC) problem belongs to the class of NP-
complete graph theoretical problems, which plays a central 
role in theoretical computer science and it has a numerous real 
life applications [3]. We are unlikely to find a polynomial-time 
algorithm for solving vertex-cover problem exactly. Vertex-
cover exhibits a coverable–uncover able phase transition. 
 
Branch-and-bound problem solver (BB), approximation algo-
rithm, greedy algorithm simple genetic algorithm (GA), pri-
mal-dual based algorithm (PDB) and the Alom’s algorithm. 
These approaches can be used to solve Vertex Cover problem. 
The results indicate that all algorithms give near optimal solu-
tions. The performance differences of all algorithms on a 
graph are relatively small to obtain a vertex-cover.  
 
Vertex cover problem is a NP-complete problem. If a problem 
is NP-complete, we are unlikely to find polynomial-time algo-
rithm for solving it exactly, but this does not imply that all 
hope is lost. There are two approaches to getting around NP- 
completeness. First if the actual inputs are small, an algorithm 

with exponential running time may be perfectly satisfactory. 

Second, it may still possible to find near optimal solutions in 
polynomial time. In practice near optimality is often good 
enough. An algorithm that returns near-optimal solutions is 
called an approximation. [4, 5 and 6]. 
 
In computer science, the Vertex Cover Problem or Node Cover 
Problem is one of Karp's 21 NP-complete problems. It is often 
used in complexity theory to prove NP-hardness of more 
complicated problems. The classical minimum vertex-cover 
problem involves graph theory and finite combinatory and is 
categorized under the class of NP-complete problems in terms 
of its computational complexity [7]. Minimum vertex cover 
has attracted researchers and practitioners because of the NP-
completeness and because many difficult real-life problems 
can be formulated as instances of the minimum vertex cover. 
Examples of the areas where the minimum vertex-cover prob-
lem occurs in real world applications are communications, 
civil and electrical engineering, and bioinformatics. 
Definition: Consider a graph G = (V, E) where V and E are 
accordingly set of vertices and edges. A vertex cover of an 
undirected graph G is a subset V (c) of V such that if (u, v) is 
an edge of G, Then either u   V(c) or v  V(c) or both. 
 
The size of a vertex cover is the number of vertices in it. The 
vertex cover problem is to find a vertex cover of minimum size 
in a given undirected graph. Such a vertex cover is called an 
optimal vertex cover. ‘Coreman’ describes an approximation 
algorithm with O (E) time for vertex cover problem. This algo-
rithm finds the approximate solution.  
 
There are two versions of the minimum vertex cover problem: 
the decision version and the optimization one. In the decision 
version, the task is to verify for a given graph whether there 
exists a vertex cover of a specified size. On the other hand, in 
the optimization version of this problem, the task is to find a 
vertex cover of minimum size. To illustrate minimum vertex 
cover, consider the problem of placing guards Hartmann, [8] 
in a museum where corridors in the museum corresponds one 
guard at the end of each corridor. 
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The minimum vertex cover problem is also closely related to 
many other hard graph problems and so it interests the re-
searchers in the field of design of optimization and approxi-
mation algorithms. For instance, the independent set problem, 
is similar to the minimum vertex cover problem because a 
minimum vertex cover defines a maximum independent set 
and vice versa. Another interesting problem that is closely 
related to the minimum vertex cover is the edge cover which 
seeks the smallest set of edges such that each vertex is includ-
ed in one of the edges. 
 

1.1 NP-Completeness and reducibility 
In computational complexity theory, the complexity class NP-
complete is a class of decision problems. A decision problem L 
is NP-complete if it is in the set of NP problems so that any 
given solution to the decision problem can be verified in poly-
nomial time, and also in the set of NP-hard problems so that 
any NP problem can be converted into L by a transformation 
of the inputs in polynomial time. [9], [10], [11] 
Although any given solution to such a problem can be verified 
quickly, there is no known efficient way to locate a solution in 
the first place; indeed, the most notable characteristic of NP-
complete problems is that no fast solution to them is known. 
That is, the time required to solve the problem using any cur-
rently known algorithm increases very quickly as the size of 
the problem grows. As a result, the time required to solve 
even moderately sized versions of many of these problems 
easily reaches into the billions or trillions of years, using any 
amount of computing power available today. As a conse-
quence, determining whether or not it is possible to solve 
these problems quickly, called the P versus NP problem, is one 
of the principal unsolved problems in computer science today. 
[12], [13] 
While a method for computing the solutions to NP-complete 
problems using a reasonable amount of time remains undis-
covered, computer scientists and programmers still frequently 
encounter NP-complete problems. NP-complete problems are 
often addressed by using approximation algorithms [14], [15], 
[16]. 
NP-complete is a subset of NP, the set of all decision problems 
whose solutions can be verified in polynomial time; NP may 
be equivalently defined as the set of decision problems that 
can be solved in polynomial time on a nondeterministic Tu-
ring machine. A problem p in NP is also in NPC if and only if 
every other problem in NP can be transformed into p in poly-
nomial time. [17], [18]. 
The easiest way to prove that some new problem is NP-
complete is first to prove that it is in NP, and then to reduce 
some known NP-complete problem to it. Therefore, it is useful 
to know a variety of NP-complete problems. The list below 
contains some well-known problems that are NP-complete 
when expressed as decision problems. [19],[20] 

1. Knapsack problem 
2. Hamiltonian path problem 
3. Traveling salesman problem 
4. Subset sum problem 

5. Clique problem 
6. Vertex cover problem 
7. Graph coloring problem 

 

1.2 Solving NP-complete problems 
At present, all known algorithms for NP-complete problems 
require time that is super polynomial in the input size, and it 
is unknown whether there are any faster algorithms. [21],[22]. 
The following techniques can be applied to solve computa-
tional problems in general, and they often give rise to substan-
tially faster algorithms: [23]. 
 
Approximation: Instead of searching for an optimal solution, 
search for an "almost" optimal one. 
Randomization: Use randomness to get a faster average run-
ning time, and allow the algorithm to fail with some small 
probability. Note: The Monte Carlo method is not an example 
of an efficient algorithm, although evolutionary approaches 
like Genetic algorithms may be. 
Restriction: By restricting the structure of the input (e.g., to 
planar graphs), faster algorithms are usually possible. 
Parameterization: Often there are fast algorithms if certain 
parameters of the input are fixed. 
Heuristic: An algorithm that works "reasonably well" in many 
cases, but for which there is no proof that it is both always fast 
and always produces a good result. Metaheuristic approaches 
are often used. 
 

1.3 The vertex cover problem:   
A vertex cover of an undirected graph G= (V, E) is a subset 
V’of V such that if (u, v) is an edge of G then either u  V’ or v 
 V’ (or both). The size of vertex cover is the number of verti-
ces in it. [24], [25], [26] 
The vertex cover problem is to find a vertex cover of minimum 
size in a given undirected graph. This problem is the optimiza-
tion version of an NP-Complete decision problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1- The optimal cover for the given graph is C= {V12, V13} 
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2.0 PROPOSED ALGORITHM 
This paper suggests a polynomial time approximation algo-
rithm to solve the vertex cover problem. The algorithm is sim-
ple and straight to find the near optimal vertex cover to the 
given graph. The algorithms takes graph G (V, E) as adjacency 
matrix W, W= [d [i, j]] |V|× |V| // the adjacency matrix//. 
The algorithm is based on greedy approach but capable to 
produce the near optimal result. The algorithm is tested on 
various types of graphs and results given by the algorithm are 
accurate. 
 
New Optimal Vertex Cover (G, W) 
 
//Input: A graph G = (V, E) 
// Output: Set C subset of V, the vertex cover. 
// The graph is represented with adjacency matrix W (|V| × 
|V|) 
 
1. D =W; 
2. C= φ;                      // Null set // 
3. do 
4. For  i =1 to |V|  
5. do D[i] =  ∑ d[i,j] 
                        1≤ j ≤ |V| 
6.     Ki    =    Max   {D[i]} 
                         1≤ i ≤ |V| 
7. C=C U {Vi}   // Vi is the vertex Corre-
sponding to Ki, index i will locate Vi // 
8. For (j=1, j ≤ |V|, j++) 
        Set   d [i, j] =0 
 9. For    (i=1, i ≤ |V|, i++)| 
         Set d [i, j] =0 
10. While (Ki ≠ 0)  // the matrix turns in to 
zero matrix// 
11. Return C.             // the near optimal vertex 
cover// 
 

3. THE COMPLEXITY OF THE ALGORITHM 
The time complexity of the algorithms based on the following 
steps 
 

1. Calculation of D[i],  
2. Calculation of Ki  
3. Set   d [i, j] =0    
4. Set d [i, j] = 0. 
5. Finally, while (Ki ≠ 0)  

        
To compute all D[i] is of order O (|V|), time to find Ki is 
again of order O (|V|). The step 8 and 9 both takes time  of 
order O (|V|), all these steps are independent of each other so 
the total complexity of inner steps is of order (|V| +|V| + 
(|V|  + |V|). i.e.4(|V|). while loops runs until the adjacency 
matrix does not turn in to Zero Matrix. The time consumed in 
the testing whether Ki  is zero or not, takes time not more than 
O (|V|). So the time complexity of this algorithm in total is at 
most of order O (|V| (|V| +|V| + |V| + |V|)).i.e.  O 

(|V|2).     If |V| = n (says) (Number of vertices in graph G are 
n) then the time complexity of the algorithm is O (n2). 
 

3.1 Applying the algorithm on a given Graph:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.2 - The input graph 

Number of nodes, n = |V| =11,  
Initially  C = φ  
And   D = 
 
 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i] 

V1 0 1 0 0 0 0 1 0 0 0 0 2 

V2 1 0 1 1 0 0 1 1 0 0 0 5 

V3 0 1 0 1 0 0 0 0 0 0 0 2 

V4 0 1 1 0 1 1 0 0 0 0 0 4 

V5 0 0 0 1 0 1 0 0 0 0 0 2 

V6 0 0 0 1 1 0 1 0 0 1 0 4 

V7 1 1 0 0 0 1 0 1 0 1 0 5 

V8 0 1 0 0 0 0 1 0 1 1 0 4 

V9 0 0 0 0 0 0 0 1 0 1 1 3 

V10 0 0 0 0 0 1 1 1 1 0 1 5 

V11 0 0 0 0 0 0 0 0 1 1 0 2 

 
Ki  = 2 
C =   φ U {V2} = {V2} 
Setting      a [2, j] = 0    for 1≤ j ≤11 
               
                  and    a [i, 2] = 0   for   1≤ i ≤11 
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 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i] 

V1 0 0 0 0 0 0 1 0 0 0 0 1 

V2 0 0 0 0 0 0 0 0 0 0 0 0 

V3 0 0 0 1 0 0 0 0 0 0 0 1 

V4 0 0 1 0 1 1 0 0 0 0 0 3 

V5 0 0 0 1 0 1 0 0 0 0 0 2 

V6 0 0 0 1 1 0 1 0 0 1 0 4 

V7 1 0 0 0 0 1 0 1 0 1 0 4 

V8 0 0 0 0 0 0 1 0 1 1 0 3 

V9 0 0 0 0 0 0 0 1 0 1 1 3 

V10 0 0 0 0 0 1 1 1 1 0 1 5 

V11 0 0 0 0 0 0 0 0 1 1 0 2 

 
Ki = 10, 
C = {V2} U {V10} = {V2, V10} 
 
Setting   
 
a [10, j] = 0 for 1≤ j ≤11 
 
 and   a [i, 10] = 0 for 1≤ i ≤11   
 
 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i] 

V1 0 0 0 0 0 0 1 0 0 0 0 1 

V2 0 0 0 0 0 0 0 0 0 0 0 0 

V3 0 0 0 1 0 0 0 0 0 0 0 1 

V4 0 0 1 0 1 1 0 0 0 0 0 3 

V5 0 0 0 1 0 1 0 0 0 0 0 2 

V6 0 0 0 1 1 0 1 0 0 0 0 3 

V7 1 0 0 0 0 1 0 1 0 0 0 3 

V8 0 0 0 0 0 0 1 0 1 0 0 2 

V9 0 0 0 0 0 0 0 1 0 0 1 2 

V10 0 0 0 0 0 0 0 0 0 0 0 0 

V11 0 0 0 0 0 0 0 0 1 0 0 1 

 
Ki =4, 
 
C = {V4} U {V2, V10} = {V4, V2, V10} 
 
Setting  
 a [4, j] = 0 for 1≤ j ≤11  
and       a [i, 4] = 0 for 1≤ i ≤11   
 
 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i] 

V1 0 0 0 0 0 0 1 0 0 0 0 1 

V2 0 0 0 0 0 0 0 0 0 0 0 0 

V3 0 0 0 0 0 0 0 0 0 0 0 0 

V4 0 0 0 0 0 0 0 0 0 0 0 0 

V5 0 0 0 0 0 1 0 0 0 0 0 1 

V6 0 0 0 0 1 0 1 0 0 0 0 2 

V7 1 0 0 0 0 1 0 1 0 0 0 3 

V8 0 0 0 0 0 0 1 0 1 0 0 2 

V9 0 0 0 0 0 0 0 1 0 0 1 2 

V10 0 0 0 0 0 0 0 0 0 0 0 0 

V11 0 0 0 0 0 0 0 0 1 0 0 1 

 
Ki =7 
 

C = {V7} U {V4, V2, V10} = { V7, V4, V2, V10} 
 
Setting  
 a [7, j] = 0 for 1≤ j ≤11  
 
and       a [i, 7] = 0 for 1≤ i ≤11   
 
 
 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i] 

V1 0 0 0 0 0 0 0 0 0 0 0 0 

V2 0 0 0 0 0 0 0 0 0 0 0 0 

V3 0 0 0 0 0 0 0 0 0 0 0 0 

V4 0 0 0 0 0 0 0 0 0 0 0 0 

V5 0 0 0 0 0 1 0 0 0 0 0 1 

V6 0 0 0 0 1 0 0 0 0 0 0 1 

V7 0 0 0 0 0 0 0 0 0 0 0 0 

V8 0 0 0 0 0 0 0 0 1 0 0 1 

V9 0 0 0 0 0 0 0 1 0 0 1 2 

V10 0 0 0 0 0 0 0 0 0 0 0 0 

V11 0 0 0 0 0 0 0 0 1 0 0 1 

 
Ki =9 
 
C = {V9} U {V7, V4, V2, V10}   = {V9, V7, V4, V2, V10} 
 
Setting  
 a [9, j] = 0 for 1≤ j ≤11  
and       a [i, 9] = 0 for 1≤ i ≤11   
 
 
 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i] 

V1 0 0 0 0 0 0 0 0 0 0 0 0 

V2 0 0 0 0 0 0 0 0 0 0 0 0 

V3 0 0 0 0 0 0 0 0 0 0 0 0 

V4 0 0 0 0 0 0 0 0 0 0 0 0 

V5 0 0 0 0 0 1 0 0 0 0 0 1 

V6 0 0 0 0 1 0 0 0 0 0 0 1 

V7 0 0 0 0 0 0 0 0 0 0 0 0 

V8 0 0 0 0 0 0 0 0 0 0 0 0 

V9 0 0 0 0 0 0 0 0 0 0 0 0 

V10 0 0 0 0 0 0 0 0 0 0 0 0 

V11 0 0 0 0 0 0 0 0 0 0 0 0 

 
Ki = 5, 
 
C = {V5} U {V9, V7, V4, V2, V10} =   = {V5, V9, V7, V4, V2, V10} 
 
Setting  
 a [5, j] = 0 for 1≤ j ≤11  
 
and       a [i, 5] = 0 for 1≤ i ≤11   
 
 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 D[i] 

V1 0 0 0 0 0 0 0 0 0 0 0 0 

V2 0 0 0 0 0 0 0 0 0 0 0 0 

V3 0 0 0 0 0 0 0 0 0 0 0 0 

V4 0 0 0 0 0 0 0 0 0 0 0 0 

V5 0 0 0 0 0 0 0 0 0 0 0 0 
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V6 0 0 0 0 0 0 0 0 0 0 0 0 

V7 0 0 0 0 0 0 0 0 0 0 0 0 

V8 0 0 0 0 0 0 0 0 0 0 0 0 

V9 0 0 0 0 0 0 0 0 0 0 0 0 

V10 0 0 0 0 0 0 0 0 0 0 0 0 

V11 0 0 0 0 0 0 0 0 0 0 0 0 

 
Ki = 0 // Zero // Algorithm terminates  
Output:        So C = {V5, V9, V7, V4, V2, V10} is the near opti-
mal cover. 
 

4.0 APPLICATION OF THE SOLUTION:  (THE WATCH 
TOWER CONCEPT) 

 
High speed communication networks are the demand of time, 
A key challenge is to make communication network fault free 
and reliable, it is the responsibility of the network manage-
ment to meet these challenges. Fault management is an im-
portant part of network management which is responsible for 
detection and identification of the network fault.   
Fault management is a critical issue since fault and downtime 
is very costly. 
 
Now a day the occurrence of faults in communication network 
are very frequent , and some time it is difficult to identify the 
fault quickly, also to monitor the performance of all the links 
in networks is vital , Vertex Cover problem suggest the con-
cept of watch tower ,these are specific node in the communica-
tion network which are maximally connected with other nodes 
, with these few nodes it is possible to identify the occurrence 
of the fault quickly and  to monitor the performance of the 
entire network   
 

CONCLUSION 
The greedy algorithm gives solutions better than approxima-
tion algorithm. The algorithm always makes the choice that 
looks best at the moment. Clever greedy algorithm always 
takes the vertex with the highest degree, add it to the cover 
set, remove it from the graph, and repeats. But the greedy 
heuristic cannot always find an optimal solution. 
The approximation algorithms are available to solve the vertex 
cover problem which generally gives the near optimal solution 
in polynomial time. The proposed approximation algorithm 
provides the solution to vertex cover problem in polynomial 
time, though the time taken by the algorithm is a polynomial 
of little high of degree 2 but it is possible to reduce it further, 
the proposed approximation algorithm gives the optimal solu-
tion in majority of the cases but fails to provide optimal solu-
tion in some specific cases. 
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